Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness.

نویسندگان

  • Lakshmi Santhanam
  • Eric C Tuday
  • Alanah K Webb
  • Phillip Dowzicky
  • Jae Hyung Kim
  • Young Jun Oh
  • Gautam Sikka
  • Maggie Kuo
  • Marc K Halushka
  • Anne M Macgregor
  • Jessilyn Dunn
  • Sarah Gutbrod
  • David Yin
  • Artin Shoukas
  • Daniel Nyhan
  • Nicholas A Flavahan
  • Alexey M Belkin
  • Dan E Berkowitz
چکیده

RATIONALE Although an age-related decrease in NO bioavailability contributes to vascular stiffness, the underlying molecular mechanisms remain incompletely understood. We hypothesize that NO constrains the activity of the matrix crosslinking enzyme tissue transglutaminase (TG2) via S-nitrosylation in young vessels, a process that is reversed in aging. OBJECTIVE We sought to determine whether endothelium-dependent NO regulates TG2 activity by S-nitrosylation and whether this contributes to age-related vascular stiffness. METHODS AND RESULTS We first demonstrate that NO suppresses activity and increases S-nitrosylation of TG2 in cellular models. Next, we show that nitric oxide synthase (NOS) inhibition leads to increased surface and extracellular matrix-associated TG2. We then demonstrate that endothelium-derived bioactive NO primarily mediates its effects through TG2, using TG2(-/-) mice chronically treated with the NOS inhibitor l-N(G)-nitroarginine methyl ester (L-NAME). We confirm that TG2 activity is modulated by endothelium-derived bioactive NO in young rat aorta. In aging rat aorta, although TG2 expression remains unaltered, its activity increases and S-nitrosylation decreases. Furthermore, TG2 inhibition decreases vascular stiffness in aging rats. Finally, TG2 activity and matrix crosslinks are augmented with age in human aorta, whereas abundance remains unchanged. CONCLUSIONS Decreased S-nitrosylation of TG2 and increased TG activity lead to enhanced matrix crosslinking and contribute to vascular stiffening in aging. TG2 appears to be the member of the transglutaminase family primarily contributing to this phenotype. Inhibition of TG2 could thus represent a therapeutic target for age-associated vascular stiffness and isolated systolic hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise, Vascular Stiffness, and Tissue Transglutaminase

BACKGROUND Vascular aging is closely associated with increased vascular stiffness. It has recently been demonstrated that decreased nitric oxide (NO)-induced S-nitrosylation of tissue transglutaminase (TG2) contributes to age-related vascular stiffness. In the current study, we tested the hypothesis that exercise restores NO signaling and attenuates vascular stiffness by decreasing TG2 activity...

متن کامل

Increased tissue transglutaminase activity contributes to central vascular stiffness in eNOS knockout mice.

Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In t...

متن کامل

Arginase and vascular aging.

Vascular and associated ventricular stiffness is one of the hallmarks of the aging cardiovascular system. Both an increase in reactive oxygen species production and a decrease in nitric oxide (NO) bioavailability contribute to the endothelial dysfunction that underlies this vascular stiffness, independent of other age-related vascular pathologies such as atherosclerosis. The activation/upregula...

متن کامل

Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats.

There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginas...

متن کامل

How Old are Your Arteries? Exercise‐Mediated Protection From Age‐Associated Vascular Stiffness

A s we age, the blood vessel becomes more susceptible to pathologies including hypertension and atherosclerosis. A famous saying of Thomas Sydenham, English physician, states: “man is as old as his arteries.” However, changes in the function and structure of the arteries with aging, such as arterial stiffening and thickening, do not occur to the same extent in all people. Studies by Seals et al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2010